organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dicyclohexylammonium 3-[(hydroxymethyl)carbamoyl]propanoate

Subadra Rajeswari,^a Ganesan Venkatesa Prabhu,^a* Dhanapal Tamilvendan^a and Helen Stoeckli-Evans^b

^aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India, and ^bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland

Correspondence e-mail: venkates@nitt.edu,helen.stoeckli-evans@unine.ch

Received 2 November 2010; accepted 2 November 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.095; data-to-parameter ratio = 17.5.

The title compound, $C_{12}H_{24}N^+ \cdot C_5H_8NO_4^-$, contains one dicyclohexylammonium cation and one 3-[(hydroxymeth-yl)carbamoyl]propanoate anion in the asymmetric unit. In the crystal, the ions are linked by intermolecular N-H···O and O-H···O hydrogen bonds, forming chains propagating along [100].

Related literature

For the biological activity of succinimide derivatives, see: Argay *et al.* (1999). For the preparation of the Mannich base 1-[(dicyclohexylamino)methyl]pyrrolidine-2,5-dione, see: Tramontini (1973); Tramontini & Angliolini (1990). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{24}N^+ \cdot C_5H_8NO_4^{-7}\\ M_r = 328.45\\ \text{Monoclinic, } P2_1/n\\ a = 5.6844 \ (5) \ \text{\AA}\\ b = 17.7967 \ (12) \ \text{\AA}\\ c = 18.4264 \ (16) \ \text{\AA}\\ \beta = 95.495 \ (7)^\circ \end{array}$

 $V = 1855.5 (3) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 173 K $0.45 \times 0.45 \times 0.13 \text{ mm}$

Data collection

```
Stoe IPDS-2 diffractometer
Absorption correction: multi-scan
(MULscanABS in PLATON;
Spek, 2009)
T_{min} = 0.714, T_{max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.095$	independent and constrained
S = 0.93	refinement
3941 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
225 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

11855 measured reflections

 $R_{\rm int} = 0.055$

3941 independent reflections

2568 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	0.902(17)	2507(17)	2 295 (2)	1247 (14)
$NI - HIA \cdots OI_{i}$	0.892(17)	2.397 (17)	3.285 (2)	134.7 (14)
$N1 - H1A \cdots O2^{1}$	0.892 (17)	1.975 (17)	2.8546 (18)	168.7 (15)
$N1 - H1B \cdot \cdot \cdot O1^{ii}$	0.95 (2)	1.80 (2)	2.740 (2)	174.3 (17)
$N2 - H2N \cdot \cdot \cdot O2^{iii}$	0.829 (17)	2.069 (17)	2.8914 (18)	171.1 (16)
$O4-H4O\cdots O3^{iii}$	0.88 (2)	1.78 (2)	2.6423 (16)	166.4 (19)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x - 1, y, z.

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors gratefully acknowledge Dr Panchanatheeswaran for his support and many helpful discussions. HSE thanks the X-Ray Application LAB, CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2363).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Argay, G., Fábián, L. & Kálmán, A. (1999). Croat. Chem. Acta, 72, 551–565. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.

- Tramontini, M. (1973). Synthesis, 12, 703-775.
- Tramontini, M. & Angliolini, L. (1990). Tetrahedron, 46, 1791-1837.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, o3096 [doi:10.1107/S1600536810044958]

Dicyclohexylammonium 3-[(hydroxymethyl)carbamoyl]propanoate

S. Rajeswari, G. Venkatesa Prabhu, D. Tamilvendan and H. Stoeckli-Evans

Comment

The pyrrolidine skeleton occurs in many families of biologically important compounds, and several succinimide derivatives are important in biology due to their antepileptic, anticonvulsive, fungicidal and other pharmalogical properties (Argay *et al.* 1999). The title compound was obtained during our attempts to prepare the Mannich base 1-((dicyclohexylamino)methyl)pyrrolidine-2,5-dione according to the reported procedure (Tramontini, 1973; Tramontini & Angliolini, 1990). The anion is probably formed by the hydrolysis of succinimide to yield the amino acid, *i.e.* NH₂COCH₂CH₂COOH. The formation of the the title compound can be accounted for by the reaction of this amino acid with formaldehyde and the subsequent protonation of dicyclohexylamine.

The molecular structure of the title compound is illustrated in Fig. 1. It is composed of a dicyclohexylammonium cation and a 4-(hydroxymethylamino)-4-oxobutanoate anion. The bond lengths (Allen *et al.*, 1987) and angles are normal.

In the crystal the cations and anions are linked *via* N—H···O and O—H···O hydrogen bonds involving both the cation and the anion. In this manner hydrogen bonded polymer chains are formed propagating in [100]; see Fig. 2 and Table 1 for details.

Experimental

Dicyclohexylamine (36.2 ml, 0.2*M*) was added slowly to a solution of succinimide in ethanol (19.8 g, 0.2*M*). A solution of formaldehyde (40%, 15 ml) was added in drops with continuous stirring of the solution. The yellowish brown compound formed was initially sticky in nature and slowly turned into a stony mass, which was then crushed to form a fine powder. This product was washed several times with acetone and was then dried in the air in an oven at 333 K and recrystallized using water.

Refinement

The H-atoms could all be located in difference electron-density maps. The NH₂, NH and OH H-atoms were freely refined. O—H = 0.88 (2) Å, N—H = 0.829 (17) - 0.95 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding: C—H = 0.99 and 1.0 Å for CH₂ and CH H-atoms, respectively, with $U_{iso}(H) = 1.2$ Ueq (parent C-atom).

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. A partial view of the crystal packing of the title compound, showing the formation of the N—H…O and O—H…O hydrogen bonded (dashed cyan lines) polymer chain propagating in [100]; see Table 1 for details. H-atoms not involved in hydrogen bonding have been omitted for clarity.

Dicyclohexylammonium 3-[(hydroxymethyl)carbamoyl]propanoate

Crystal data

C₁₂H₂₄N⁺·C₅H₈NO₄⁻⁻ $M_r = 328.45$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.6844 (5) Å b = 17.7967 (12) Å c = 18.4264 (16) Å $\beta = 95.495$ (7)° V = 1855.5 (3) Å³ Z = 4

Data collection

Stoe IPDS-2 diffractometer	3941 independent reflections
Radiation source: fine-focus sealed tube	2568 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.055$
ϕ and ω scans	$\theta_{\text{max}} = 26.7^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan (MULscanABS in <i>PLATON</i> ; Spek, 2009)	$h = -6 \rightarrow 7$
$T_{\min} = 0.714, T_{\max} = 1.000$	$k = -22 \rightarrow 21$
11855 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.095$	$w = 1/[\sigma^2(F_o^2) + (0.0463P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{max} < 0.001$
3941 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
225 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}

F(000) = 720 $D_x = 1.176 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 7150 reflections $\theta = 1.6-27.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.45 \times 0.45 \times 0.13 \text{ mm}$ Primary atom site location: structure-invariant direct Extinction coefficient: 0.0046 (12)

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. The H-atoms could all be located in difference electron-density maps. The NH₂, NH and OH H-atoms were freely refined. O—H = 0.88 (2) Å, N—H = 0.829 (17) - 0.95 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding: C—H = 0.99 and 1.0 Å for CH₂ and CH H-atoms, respectively, with $U_{iso}(H) = 1.2$ Ueq (parent C-atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.1835 (3)	0.16377 (7)	0.26459 (6)	0.0231 (4)
C1	0.1626 (3)	0.15553 (8)	0.18284 (7)	0.0240 (4)
C2	0.3908 (3)	0.17650 (9)	0.15118 (7)	0.0302 (5)
C3	0.3685 (3)	0.16325 (9)	0.06882 (8)	0.0337 (5)
C4	0.2964 (3)	0.08243 (9)	0.05011 (8)	0.0376 (5)
C5	0.0679 (3)	0.06210 (9)	0.08250 (8)	0.0360 (5)
C6	0.0916 (3)	0.07455 (8)	0.16494 (7)	0.0295 (5)
C7	0.2441 (3)	0.24038 (8)	0.29523 (7)	0.0268 (5)
C8	0.2700 (3)	0.23401 (9)	0.37808 (8)	0.0342 (5)
C9	0.3228 (3)	0.31025 (10)	0.41315 (9)	0.0418 (6)
C10	0.1112 (5)	0.37352 (10)	0.30517 (10)	0.0554 (7)
C11	0.1319 (4)	0.36647 (10)	0.38784 (9)	0.0461 (6)
C12	0.0575 (4)	0.29729 (9)	0.26847 (8)	0.0402 (6)
01	0.7522 (2)	0.63034 (6)	0.19198 (6)	0.0350 (3)
02	1.02645 (19)	0.55189 (6)	0.16058 (6)	0.0358 (3)
03	0.5058 (2)	0.35217 (7)	0.07565 (8)	0.0589 (5)
O4	-0.0493 (2)	0.31104 (7)	0.07088 (6)	0.0382 (4)
N2	0.1841 (2)	0.42193 (8)	0.08447 (7)	0.0317 (4)
C13	0.8158 (3)	0.57440 (8)	0.15773 (7)	0.0256 (4)
C14	0.6297 (3)	0.52971 (9)	0.11060 (8)	0.0292 (5)
C15	0.5506 (3)	0.46122 (9)	0.15209 (8)	0.0334 (5)
C16	0.4109 (3)	0.40679 (9)	0.10178 (8)	0.0324 (5)
C17	0.0415 (3)	0.37297 (9)	0.03501 (8)	0.0341 (5)
H1	0.03410	0.18950	0.16150	0.0290*
H1A	0.290 (3)	0.1313 (10)	0.2847 (8)	0.027 (4)*
H1B	0.038 (4)	0.1508 (10)	0.2824 (10)	0.046 (5)*
H2A	0.52230	0.14590	0.17460	0.0360*
H2B	0.42740	0.23010	0.16150	0.0360*
H3A	0.24910	0.19800	0.04500	0.0400*
H3B	0.52180	0.17420	0.04970	0.0400*
H4A	0.27430	0.07640	-0.00350	0.0450*
H4B	0.42380	0.04790	0.06940	0.0450*
H5A	0.02890	0.00880	0.07180	0.0430*

H5B	-0.06280	0.09340	0.05960	0.0430*
H6A	-0.06090	0.06330	0.18450	0.0350*
H6B	0.21240	0.04000	0.18840	0.0350*
H7	0.39910	0.25640	0.27880	0.0320*
H8A	0.12210	0.21370	0.39470	0.0410*
H8B	0.39970	0.19870	0.39350	0.0410*
H9A	0.33190	0.30530	0.46690	0.0500*
H9B	0.47760	0.32860	0.40000	0.0500*
H10A	0.26100	0.39360	0.28970	0.0670*
H10B	-0.01650	0.40940	0.28940	0.0670*
H11A	0.17100	0.41610	0.41020	0.0550*
H11B	-0.02120	0.34990	0.40380	0.0550*
H12A	-0.09990	0.27950	0.27980	0.0480*
H12B	0.05430	0.30280	0.21490	0.0480*
H2N	0.124 (3)	0.4572 (10)	0.1056 (9)	0.034 (5)*
H4O	-0.195 (4)	0.3219 (13)	0.0796 (11)	0.068 (7)*
H14A	0.69610	0.51300	0.06550	0.0350*
H14B	0.49160	0.56220	0.09640	0.0350*
H15A	0.69130	0.43540	0.17620	0.0400*
H15B	0.45190	0.47800	0.19050	0.0400*
H17A	-0.09140	0.40220	0.01050	0.0410*
H17B	0.13900	0.35450	-0.00300	0.0410*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0259 (7)	0.0221 (7)	0.0210 (6)	0.0028 (6)	0.0002 (5)	0.0016 (5)
C1	0.0289 (8)	0.0222 (7)	0.0202 (7)	0.0021 (7)	-0.0007 (6)	-0.0006 (5)
C2	0.0358 (9)	0.0276 (8)	0.0276 (7)	-0.0042 (7)	0.0051 (6)	-0.0013 (6)
C3	0.0427 (10)	0.0324 (9)	0.0273 (8)	-0.0034 (8)	0.0104 (7)	-0.0013 (6)
C4	0.0526 (11)	0.0335 (9)	0.0278 (8)	0.0002 (8)	0.0096 (7)	-0.0069 (7)
C5	0.0478 (11)	0.0306 (9)	0.0293 (8)	-0.0065 (8)	0.0019 (7)	-0.0077 (6)
C6	0.0362 (9)	0.0245 (8)	0.0277 (7)	-0.0039 (7)	0.0021 (6)	-0.0008 (6)
C7	0.0314 (9)	0.0245 (8)	0.0248 (7)	-0.0036 (7)	0.0041 (6)	-0.0039 (6)
C8	0.0418 (10)	0.0342 (9)	0.0254 (7)	0.0073 (8)	-0.0033 (7)	-0.0040 (6)
C9	0.0476 (11)	0.0452 (10)	0.0319 (8)	-0.0037 (9)	-0.0003 (7)	-0.0125 (8)
C10	0.0968 (18)	0.0235 (9)	0.0439 (10)	0.0069 (10)	-0.0043 (10)	-0.0039(7)
C11	0.0669 (14)	0.0300 (9)	0.0411 (9)	0.0003 (9)	0.0038 (9)	-0.0121 (7)
C12	0.0623 (12)	0.0257 (9)	0.0305 (8)	0.0080 (9)	-0.0069 (8)	0.0000 (6)
01	0.0304 (6)	0.0338 (6)	0.0409 (6)	-0.0011 (5)	0.0038 (5)	-0.0132 (5)
O2	0.0265 (6)	0.0311 (6)	0.0485 (6)	0.0006 (5)	-0.0026 (5)	-0.0113 (5)
O3	0.0329 (7)	0.0372 (8)	0.1074 (12)	-0.0028 (6)	0.0107 (7)	-0.0271 (7)
O4	0.0313 (7)	0.0291 (6)	0.0540 (7)	-0.0021 (6)	0.0033 (6)	-0.0010 (5)
N2	0.0303 (8)	0.0277 (7)	0.0366 (7)	-0.0019 (6)	0.0011 (6)	-0.0095 (6)
C13	0.0273 (8)	0.0243 (8)	0.0251 (7)	-0.0030(7)	0.0017 (6)	0.0007 (6)
C14	0.0288 (9)	0.0250 (8)	0.0325 (8)	-0.0037 (7)	-0.0040 (6)	0.0005 (6)
C15	0.0316 (9)	0.0309 (9)	0.0368 (8)	-0.0074 (8)	-0.0020(7)	0.0026 (7)
C16	0.0300 (9)	0.0236 (8)	0.0441 (9)	-0.0056 (7)	0.0060 (7)	-0.0008 (7)

C17	0.0357 (9)	0.0335 (9)	0.0330 (8)	-0.0047 (8)	0.0023 (7)	-0.0056 (7)
Geometric paran	neters (Å, °)					
O1—C13		1.2505 (18)	С3-	—H3A	0	.9900
O2—C13		1.259 (2)	C4-	–H4B	0	.9900
O3—C16		1.232 (2)	C4-	-H4A	0	.9900
O4—C17		1.408 (2)	C5-	-H5A	0	.9900
O4—H4O		0.88 (2)	C5-	-H5B	0	.9900
N1—C1		1.5068 (17)	C6-	H6B	0	.9900
N1—C7		1.5030 (19)	C6-	—Н6А	0	.9900
N1—H1A		0.892 (17)	С7-	—H7	1	.0000
N1—H1B		0.95 (2)	C8-	H8B	0	.9900
N2-C16		1.326 (2)	C8-	-H8A	0	.9900
N2—C17		1.451 (2)	С9-	—Н9В	0	.9900
N2—H2N		0.829 (17)	С9-	—Н9А	0	.9900
C1—C6		1.524 (2)	C10	—H10B	0	.9900
C1—C2		1.519 (2)	C10	—H10A	0	.9900
C2—C3		1.529 (2)	C11	—H11B	0	.9900
C3—C4		1.526 (2)	C11	—H11A	0	.9900
C4—C5		1.524 (2)	C12	—Н12В	0	.9900
C5—C6		1.528 (2)	C12	—Н12А	0	.9900
C7—C12		1.515 (2)	C13	—C14	1	.526 (2)
С7—С8		1.524 (2)	C14	—C15	1	.529 (2)
С8—С9		1.520 (2)	C15	—C16	1	.512 (2)
C9—C11		1.516 (3)	C14	—H14A	0	.9900
C10-C12		1.533 (2)	C14	—H14B	0	.9900
C10-C11		1.522 (2)	C15	—Н15А	0	.9900
C1—H1		1.0000	C15	—H15B	0	.9900
C2—H2A		0.9900	C17	—Н17А	0	.9900
C2—H2B		0.9900	C17	—H17В	0	.9900
С3—Н3В		0.9900				
C17—O4—H4O		107.9 (15)	C5-	—С6—Н6А	1	10.00
C1—N1—C7		117.20 (11)	N1-	—С7—Н7	1	09.00
C7—N1—H1A		108.0 (11)	C8-	—С7—Н7	1	09.00
C1—N1—H1A		109.8 (10)	C12	—С7—Н7	1	09.00
C1—N1—H1B		109.6 (11)	С7-	C8H8B	1	09.00
C7—N1—H1B		105.5 (11)	С9-	—С8—Н8А	1	09.00
H1A—N1—H1B		106.2 (16)	C7-	C8H8A	1	09.00
C16—N2—C17		120.06 (14)	C9-	C8H8B	1	09.00
C16—N2—H2N		118.4 (12)	H8A	А—С8—Н8В	1	08.00
C17—N2—H2N		121.3 (12)	C11	—С9—Н9В	1	09.00
N1—C1—C2		111.81 (13)	H94	А—С9—Н9В	1	08.00
C2—C1—C6		111.55 (13)	C8-	—С9—Н9А	1	10.00
N1—C1—C6		107.59 (11)	C8-	—С9—Н9В	1	10.00
C1—C2—C3		110.53 (13)	C11	—С9—Н9А	1	09.00
C2—C3—C4		111.38 (13)	C11	—С10—Н10В	1	09.00
C3—C4—C5		110.84 (13)	C12	—С10—Н10А	1	09.00
C4—C5—C6		110.95 (13)	C12	—С10—Н10В	1	09.00

C1 C6 C5	110 40 (12)	C11 C10 H10A	100.00
N1 - C7 - C8	107 79 (11)	H10A—C10—H10B	109.00
N1 - C7 - C12	110.86 (13)	C9_C11_H11B	110.00
C8 - C7 - C12	111.92 (13)	H11A—C11—H11B	108.00
C7 - C8 - C9	110.83 (13)	C10-C11-H11A	110.00
C8 - C9 - C11	110.60 (14)	C9—C11—H11A	110.00
$C_{11} - C_{10} - C_{12}$	111 20 (14)	C10—C11—H11B	110.00
C9-C11-C10	110.29 (16)	C10-C12-H12B	110.00
C7-C12-C10	110.15(16)	H12A— $C12$ — $H12B$	108.00
N1-C1-H1	109.00	C7—C12—H12B	110.00
C6-C1-H1	109.00	C10-C12-H12A	110.00
C2—C1—H1	109.00	C7-C12-H12A	110.00
$C_3 = C_2 = H_2B$	110.00	01 - 013 - 02	123 51 (14)
C3 - C2 - H2A	110.00	01 - C13 - C14	118 94 (15)
$H^2A = C^2 = H^2B$	108.00	02-C13-C14	117 55 (13)
C1-C2-H2B	110.00	C13 - C14 - C15	110.60(12)
C1 - C2 - H2A	110.00	C14 - C15 - C16	111 49 (12)
C^2 — C^3 — H^3B	109.00	03-016-N2	121 23 (15)
H_{3A} C_{3} H_{3B}	108.00	03 - C16 - C15	121.23 (15)
C4—C3—H3B	109.00	N_{2} C16 C15	117 30 (14)
C2—C3—H3A	109.00	04—C17—N2	112.52 (12)
C4—C3—H3A	109.00	C13—C14—H14A	110.00
C5—C4—H4B	109.00	C13—C14—H14B	110.00
H4A—C4—H4B	108.00	C15—C14—H14A	110.00
C5—C4—H4A	109.00	C15—C14—H14B	110.00
C3—C4—H4A	109.00	H14A—C14—H14B	108.00
C3—C4—H4B	109.00	C14—C15—H15A	109.00
C4—C5—H5B	109.00	C14—C15—H15B	109.00
H5A—C5—H5B	108.00	C16—C15—H15A	109.00
C4—C5—H5A	109.00	С16—С15—Н15В	109.00
С6—С5—Н5В	109.00	H15A—C15—H15B	108.00
С6—С5—Н5А	109.00	O4—C17—H17A	109.00
C1—C6—H6B	110.00	O4—C17—H17B	109.00
H6A—C6—H6B	108.00	N2-C17-H17A	109.00
С5—С6—Н6В	110.00	N2—C17—H17B	109.00
C1—C6—H6A	110.00	H17A—C17—H17B	108.00
C7—N1—C1—C2	59.28 (18)	C4—C5—C6—C1	56.57 (17)
C7—N1—C1—C6	-177.90 (14)	N1-C7-C8-C9	-177.94 (14)
C1—N1—C7—C8	-176.66 (14)	C8—C7—C12—C10	54.9 (2)
C1—N1—C7—C12	60.53 (19)	C12—C7—C8—C9	-55.78 (19)
C16—N2—C17—O4	84.82 (17)	N1-C7-C12-C10	175.30 (14)
C17—N2—C16—O3	1.2 (2)	C7—C8—C9—C11	56.73 (18)
C17—N2—C16—C15	178.48 (13)	C8—C9—C11—C10	-57.9 (2)
N1—C1—C2—C3	176.74 (12)	C12—C10—C11—C9	57.7 (3)
C2—C1—C6—C5	-56.83 (17)	C11-C10-C12-C7	-55.9 (2)
C6—C1—C2—C3	56.21 (16)	O1—C13—C14—C15	-96.94 (16)
N1—C1—C6—C5	-179.81 (14)	O2—C13—C14—C15	82.16 (17)
C1—C2—C3—C4	-55.54 (17)	C13—C14—C15—C16	-166.86 (13)
C2—C3—C4—C5	55.81 (17)	C14—C15—C16—O3	95.92 (18)

C3—C4—C5—C6	-56.27 (17)	C14—C15—C16—N2	-8	81.33 (18)
Hydrogen-bond geometry (Å, °)				
D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A···O1 ⁱ	0.892 (17)	2.597 (17)	3.285 (2)	134.7 (14)
N1—H1A····O2 ⁱ	0.892 (17)	1.975 (17)	2.8546 (18)	168.7 (15)
N1—H1B…O1 ⁱⁱ	0.95 (2)	1.80 (2)	2.740 (2)	174.3 (17)
N2—H2N···O2 ⁱⁱⁱ	0.829 (17)	2.069 (17)	2.8914 (18)	171.1 (16)
O4—H4O···O3 ⁱⁱⁱ	0.88 (2)	1.78 (2)	2.6423 (16)	166.4 (19)
Symmetry codes: (i) - <i>x</i> +3/2, <i>y</i> -1/2, - <i>z</i> -	+1/2; (ii) -x+1/2, y-1/2, -z-	+1/2; (iii) <i>x</i> -1, <i>y</i> , <i>z</i> .		

Fig. 2